Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 2.267
Filtrar
1.
Sci Rep ; 14(1): 8931, 2024 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-38637656

RESUMO

Whether mice can be used as a foot-and-mouth disease (FMD) model has been debated for a long time. However, the major histocompatibility complex between pigs and mice is very different. In this study, the protective effects of FMD vaccines in different animal models were analyzed by a meta-analysis. The databases PubMed, China Knowledge Infrastructure, EMBASE, and Baidu Academic were searched. For this purpose, we evaluated evidence from 14 studies that included 869 animals with FMD vaccines. A random effects model was used to combine effects using Review Manager 5.4 software. A forest plot showed that the protective effects in pigs were statistically non-significant from those in mice [MH = 0.56, 90% CI (0.20, 1.53), P = 0.26]. The protective effects in pigs were also statistically non-significant from those in guinea pigs [MH = 0.67, 95% CI (0.37, 1.21), P = 0.18] and suckling mice [MH = 1.70, 95% CI (0.10, 28.08), P = 0.71]. Non-inferiority test could provide a hypothesis that the models (mice, suckling mice and guinea pigs) could replace pigs as FMDV vaccine models to test the protective effect of the vaccine. Strict standard procedures should be established to promote the assumption that mice and guinea pigs should replace pigs in vaccine evaluation.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Cobaias , Camundongos , Febre Aftosa/prevenção & controle , Anticorpos Antivirais , Modelos Animais
2.
Prev Vet Med ; 226: 106192, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38564991

RESUMO

Foot-and-mouth disease is a controlled disease in accordance with the South African Animal Diseases Act (Act 35 of 1984). The country was classified by the World Organisation for Animal Health (WOAH) as having a FMD free zone without vaccination in 1996. However, this status was suspended in 2019 due to a FMD outbreak outside the controlled zones. FMD control in South Africa includes animal movement restrictions placed on cloven-hoofed species and products, prophylactic vaccination of cattle, clinical surveillance of susceptible species, and disease control fencing to separate livestock from wildlife reservoirs. The objectives of this study were to evaluate differences in identifying high-risk areas for FMD using risk factor and expert opinion elicitation analysis. Differences in risk between FMD introduction and FMD spread within the FMD protection zone with vaccination (PZV) of South Africa (2007-2016) were also investigated. The study was conducted in the communal farming area of the FMD PZV, which is adjacent to wildlife reserves and characterised by individual faming units. Eleven risk factors that were considered important for FMD occurrence and spread were used to build a weighted linear combination (WLC) score based on risk factor data and expert opinion elicitation. A multivariable conditional logistic regression model was also used to calculate predicted probabilities of a FMD outbreak for all dip-tanks within the study area. Smoothed Bayesian kriged maps were generated for 11 individual risk factors, overall WLC scores for FMD occurrence and spread and for predicted probabilities of a FMD outbreak based on the conditional logistic regression model. Descriptively, vaccine matching was believed to have a great influence on both FMD occurrence and spread. Expert opinion suggested that FMD occurrence was influenced predominantly by proximity to game reserves and cattle density. Cattle populations and vaccination practices were considered most important for FMD spread. Highly effective cattle inspections were observed within areas that previously reported FMD outbreaks, indicating the importance of cattle inspection (surveillance) as a necessary element of FMD outbreak detection. The multivariable conditional logistic regression analysis, which was consistent with expert opinion elicitation; identified three factors including cattle population density (OR 3.87, 95% CI 1.47-10.21) and proximities to game reserve fences (OR 0.82, 95% CI 0.73-0.92) and rivers (OR 1.04, 95% CI 1.01-1.07) as significant factors for reported FMD outbreaks. Regaining and maintaining an FMD-free status without vaccination requires frequent monitoring of high-risk areas and designing targeted surveillance.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Animais , Bovinos , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , África do Sul/epidemiologia , Teorema de Bayes , Prova Pericial , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Animais Selvagens , Fatores de Risco , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária
3.
J Virol Methods ; 326: 114906, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38479084

RESUMO

Foot-and-mouth disease (FMD) is a contagious viral disease of cloven-footed animals. Immunization with inactivated virus vaccine is effective to control the disease. Six-monthly vaccination regimen in endemic regions has proven to be effective. To enable the differentiation of infected animals from those vaccinated, non-structural proteins (NSPs) are excluded during vaccine production. While the antibodies to structural proteins (SPs) could be observed both in vaccinated and infected animals, NSP antibodies are detectable only in natural infection. Quality control assays that detect NSPs in vaccine antigen preparations, are thus vital in the FMD vaccine manufacturing process. In this study, we designed a chemiluminescence dot blot assay to detect the 3A and 3B NSPs of FMDV. It is sensitive enough to detect up to 20 ng of the NSP, and exhibited specificity as it does not react with the viral SPs. This cost-effective assay holds promise in quality control assessment in FMD vaccine manufacturing.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Febre Aftosa/diagnóstico , Febre Aftosa/prevenção & controle , Luminescência , Anticorpos Antivirais , Proteínas não Estruturais Virais , Sensibilidade e Especificidade , Ensaio de Imunoadsorção Enzimática
4.
Microbiol Spectr ; 12(4): e0337223, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38466127

RESUMO

Foot-and-mouth disease (FMD) is one of the most devastating diseases of livestock which can cause significant economic losses, especially when introduced to FMD-free countries. FMD virus (FMDV) belongs to the family Picornaviridae and is antigenically heterogeneous with seven established serotypes. The prevailing preventive and control strategies are limited to restriction of animal movement and elimination of infected or exposed animals, which can be potentially combined with vaccination. However, FMD vaccination has limitations including delayed protection and lack of cross-protection against different serotypes. Recently, antiviral drug use for FMD outbreaks has increasingly been recognized as a potential tool to augment the existing early response strategies, but limited research has been reported on potential antiviral compounds for FMDV. FMDV 3C protease (3Cpro) cleaves the viral-encoded polyprotein into mature and functional proteins during viral replication. The essential role of viral 3Cpro in viral replication and the high conservation of 3Cpro among different FMDV serotypes make it an excellent target for antiviral drug development. We have previously reported multiple series of inhibitors against picornavirus 3Cpro or 3C-like proteases (3CLpros) encoded by coronaviruses or caliciviruses. In this study, we conducted structure-activity relationship studies for our in-house focused compound library containing 3Cpro or 3CLpro inhibitors against FMDV 3Cpro using enzyme and cell-based assays. Herein, we report the discovery of aldehyde and α-ketoamide inhibitors of FMDV 3Cpro with high potency. These data inform future preclinical studies that are related to the advancement of these compounds further along the drug development pathway.IMPORTANCEFood-and-mouth disease (FMD) virus (FMDV) causes devastating disease in cloven-hoofed animals with a significant economic impact. Emergency response to FMD outbreaks to limit FMD spread is critical, and the use of antivirals may overcome the limitations of existing control measures by providing immediate protection for susceptible animals. FMDV encodes 3C protease (3Cpro), which is essential for virus replication and an attractive target for antiviral drug discovery. Here, we report a structure-activity relationship study on multiple series of protease inhibitors and identified potent inhibitors of FMDV 3Cpro. Our results suggest that these compounds have the potential for further development as FMD antivirals.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/metabolismo , Peptídeo Hidrolases/metabolismo , Sorogrupo , Febre Aftosa/tratamento farmacológico , Febre Aftosa/prevenção & controle , Endopeptidases/metabolismo , Proteases Virais 3C , Antivirais/farmacologia
5.
Arch Virol ; 169(3): 44, 2024 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-38341400

RESUMO

Foot-and-mouth disease is a highly contagious disease that affects cloven-hoofed animals. It has an important socio-economic impact on the livestock industry because it produces a drastic decrease of productivity. The disease has been successfully eradicated from some regions, including North America and Western Europe, but it is still endemic in developing countries. Agriculture plays an important role in the national economy of Vietnam, to which animal production contributes a great proportion. The concurrent circulation of foot-and-mouth disease virus (FMDV) serotypes O, A, and Asia 1 has been detected in recent years, but serotype O remains the most prevalent and is responsible for the highest numbers of outbreaks. Appropriate vaccine strain selection is an important element in the control of FMD and is necessary for the application of vaccination programs in FMD-affected regions. Here, we present updated information about the genetic and antigenic characteristics of circulating strains, collected from endemic outbreaks involving types O and A, between 2010 and 2019. Neutralizing assays showed a good in vitro match between type O strains and the monovalent O1 Campos vaccine strain. High r1 values were obtained (above 0.7) when testing a swine serum pool collected 21 days after vaccination, but the O/VTN/2/2019 strain was an exception. An EPP estimation resulted in a median neutralizing titre of about 1.65 log10, indicating that good protection could be achieved. For type A Asia SEA 97 lineage strains, acceptable individual neutralizing titres were obtained with estimated EPP values over 80% for different combinations of vaccine strains. Taking into account that the r1 value is one tool of a battery of tests that should be considered for estimating the cross-protection of a field strain against a vaccine strain, an in vivo challenge experiment was also performed, yielding a PD50 value of 8.0. The results indicate that South American strains could be potentially used for controlling outbreaks involving these lineages. This study demonstrates the importance of considering strain characteristics when choosing vaccine strains and controls.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Suínos , Vietnã/epidemiologia , Vacinas Virais/genética , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Antígenos Virais/genética , Sorogrupo
6.
J Vet Sci ; 25(1): e13, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38311326

RESUMO

BACKGROUND: Foot-and-mouth disease (FMD) is a highly contagious viral disease in livestock that has tremendous economic impact nationally. After multiple FMD outbreaks, the South Korean government implemented a vaccination policy for efficient disease control. However, during active surveillance by quarantine authorities, pig farms have reported an insufficient antibody positivity rate to FMD. OBJECTIVE: In this study, the spatial and temporal trends of insufficiency among pig farms were analyzed, and the effect of the number of government veterinary officers was explored as a potential preventive factor. METHODS: Various data were acquired, including national-level surveillance data for antibody insufficiency from the Korea Animal Health Integrated System, the number of veterinary officers, and the number of local pig farms. Temporal and geographical descriptive analyses were conducted to overview spatial and temporal trends. Additionally, logistic regression models were employed to investigate the association between the number of officers per pig farm with antibody insufficiency. Spatial cluster analysis was conducted to detect spatial clusters. RESULTS: The results showed that the incidence of insufficiency tended to decrease in recent years (odds ratio [OR], 0.803; 95% confidence interval [95% CIs], 0.721-0.893), and regions with a higher density of governmental veterinary officers (OR, 0.942; 95% CIs, 0.918-0.965) were associated with a lower incidence. CONCLUSIONS: This study implies that previously conducted national interventions would be effective, and the quality of government-provided veterinary care could play an important role in addressing the insufficient positivity rate of antibodies.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Doenças dos Suínos , Animais , Anticorpos , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Fazendas , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Gado , República da Coreia/epidemiologia , Suínos , Doenças dos Suínos/epidemiologia , Doenças dos Suínos/prevenção & controle
7.
Epidemics ; 46: 100740, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38232411

RESUMO

To control an outbreak of an infectious disease it is essential to understand the different routes of transmission and how they contribute to the overall spread of the pathogen. With this information, policy makers can choose the most efficient methods of detection and control during an outbreak. Here we assess the contributions of direct contact and environmental contamination to the transmission of foot-and-mouth disease virus (FMDV) in a cattle herd using an individual-based model that includes both routes. Model parameters are inferred using approximate Bayesian computation with sequential Monte Carlo sampling (ABC-SMC) applied to data from transmission experiments and the 2007 epidemic in Great Britain. This demonstrates that the parameters derived from transmission experiments are applicable to outbreaks in the field, at least for closely related strains. Under the assumptions made in the model we show that environmental transmission likely contributes a majority of infections within a herd during an outbreak, although there is a lot of variation between simulated outbreaks. The accumulation of environmental contamination not only causes infections within a farm, but also has the potential to spread between farms via fomites. We also demonstrate the importance and effectiveness of rapid detection of infected farms in reducing transmission between farms, whether via direct contact or the environment.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Teorema de Bayes , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Surtos de Doenças/veterinária
8.
Vaccine ; 42(3): 541-547, 2024 Jan 25.
Artigo em Inglês | MEDLINE | ID: mdl-38185546

RESUMO

Fasciola hepatica, a worldwide distributed helminth, has a robust immunoregulatory effect in the host, increasing the susceptibility to secondary infections. Foot and mouth disease (FMD) is a highly contagious acute vesicular viral disease effectively controlled by vaccination in endemic regions. Despite the evidence of immunoregulatory effects, the impact of fasciolosis on the immune response induced by FMD vaccination in cattle has never been assessed. Our objective was to evaluate whether the infection by F. hepatica in cattle influences the long-term immunity elicited by the currently used commercial FMD-inactivated vaccines. Aberdeen Angus steers negative for F. hepatica were vaccinated twice against FMD virus (FMDV) during the first 6 months of age using a commercial oil vaccine formulated with A24/Cruzeiro and O1/Campos strains. When maternal antibodies against F. hepatica were weaned (18--20 months of age) animals were divided into groups of 12 and infected or mock-infected with 500 metacercariae/animal. Individual serum samples were collected at 0-, 28-, 59-, 87- and 157-days post-infection (dpi). Indirect ELISAs were used to detect A24/Cruzeiro specific bovine IgG and IgG subtypes. The total IgG antibody levels and avidity against FMDV did not show significant differences between all the groups. The commercial vaccine induced higher IgG2 than IgG1 titers in vaccinated animals. Anti-FMDV IgG1 levels significantly decreased in the infected group at 28 dpi. In addition, the avidity of IgG1 FMDV-specific antibodies at day 28 in the infected group was reduced compared to the control. These results show that F. hepatica infection modified anamnestic responses against FMDV, reducing serum IgG1 titers and avidity. To our knowledge, this is the first report of immune-regulation of F. hepatica altering the immune response of FMD vaccines, one of the most globally used animal vaccines.


Assuntos
Doenças dos Bovinos , Fasciola hepatica , Fasciolíase , Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Bovinos , Imunoglobulina G , Anticorpos Antivirais , Febre Aftosa/prevenção & controle , Fasciolíase/prevenção & controle , Fasciolíase/veterinária , Vacinação/veterinária , Imunidade
9.
Pharm Dev Technol ; 29(2): 75-85, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38217108

RESUMO

To develop a novel water-in-oil-in-water (W/O/W) adjuvant and evaluate the effect on foot-and-mouth disease (FMD) inactivated vaccine, in this study, we prepared the novel nano-emulsion adjuvant based on QS-21 (BEA) which is composed of the mixture of mineral oil Marcol52, surfactant Tween80, oleate polyoxyethylene ether ester, polyoxyethylene palmitic acid ester and span80, cosurfactant polyethylene glycol and QS-21. The two-step emulsification method formed the W/O/W nano-emulsion with two films and three-phase structures. The effective particle diameter of the BEA was about 184 nm, and it has good thermal stability. Then, BEA was emulsified as an adjuvant to prepare for the inactivated FMDV vaccine, and BALB/c mice and pigs were immunized to evaluate its safety and immunization effect. The results showed that the inactivated BEA-FMDV vaccine significantly increased BALB/c mice and pigs' antibodies and cytokine IFN-γ in serum. Meanwhile, the pig-neutralizing antibodies were higher than control group. Safety tests found no symptoms of FMD or significant toxic reactions. After 28 days of immunization, the protection rate can reach 93.3%. The BEA vaccine had good stability at 4 °C, no stratification after 180 days, and the content of 146S in the vaccine did not decrease. In conclusion, the BEA prepared in this study is suitable for FMDV inactivated vaccine and is an effective adjuvant.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Camundongos , Animais , Suínos , Febre Aftosa/prevenção & controle , Vacinas de Produtos Inativados , Água , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Polietilenoglicóis , Ésteres
10.
ACS Appl Bio Mater ; 7(2): 1064-1072, 2024 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-38286026

RESUMO

Virus-like particle (VLP) vaccine is considered to be the most promising candidate alternative to the traditional inactivated vaccine for foot-and-mouth disease (FMD). To elicit a desired immune response, hollow mesoporous silica nanoparticles (HMSNs) have been synthesized and utilized as a nanocarrier for FMD VLP vaccine delivery. The as-prepared HMSNs displayed a relatively small particle size (∼260 nm), large cavity (∼150 nm), and thin wall (∼55 nm). The inherent structural superiorities make them ideal nanocarriers for the FMD VLP vaccine, which exhibited good biocompatibility, great protein-loading capacity, high antibody-response level, and protective efficiency, even comparable to commercial adjuvant ISA 206. All the results suggested that HMSNs may be a valid nanocarrier in VLP-based vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Nanopartículas , Vacinas , Animais , Dióxido de Silício/química , Febre Aftosa/prevenção & controle , Nanopartículas/química
11.
J Virol ; 98(2): e0200223, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38289108

RESUMO

Foot-and-mouth disease virus (FMDV) remains a challenge for cloven-hooved animals. The currently licensed FMDV vaccines induce neutralizing antibody (NAb)-mediated protection but show defects in the early protection. Dendritic cell (DC) vaccines have shown great potency in inducing rapid T-cell immunity in humans and mice. Whether DC vaccination could enhance early protection against FMDV has not been elaborately explored in domestic pigs. In this study, we employed DC vaccination as an experimental approach to study the roles of cellular immunity in the early protection against FMDV in pigs. Autologous DCs were differentiated from the periphery blood mononuclear cells of each pig, pulsed with inactivated FMDV (iFMDV-DC) and treated with LPS, and then injected into the original pigs. The cellular immune responses and protective efficacy elicited by the iFMDV-DC were examined by multicolor flow cytometry and tested by FMDV challenge. The results showed that autologous iFMDV-DC immunization induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells (CTLs), high NAb titers, compared to the inactivated FMDV vaccine, and accelerated the development of memory CD4 and CD8 T cells, which was concomitantly associated with early protection against FMDV virulent strain in pigs. Such early protection was associated with the rapid proliferation of secondary T-cell response after challenge and significantly contributed by secondary CD8 effector memory T cells. These results demonstrated that rapid induction of cellular immunity through DC immunization is important for improving early protection against FMDV. Enhancing cytotoxic CD8+ T cells may facilitate the development of more effective FMDV vaccines.IMPORTANCEAlthough the currently licensed FMDV vaccines provide NAb-mediated protection, they have defects in early immune protection, especially in pigs. In this study, we demonstrated that autologous swine DC immunization augmented the cellular immune response and induced an early protective response against FMDV in pigs. This approach induced predominantly FMDV-specific IFN-γ-producing CD4+ T cells and cytotoxic CD8+ T cells, high NAb titers, and rapid development of memory CD4 and CD8 T cells. Importantly, the early protection conferred by this DC immunization is more associated with secondary CD8+ T response rather than NAbs. Our findings highlighted the importance of enhancing cytotoxic CD8+ T cells in early protection to FMDV in addition to Th1 response and identifying a strategy or adjuvant comparable to the DC vaccine might be a future direction for improving the current FMDV vaccines.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Humanos , Camundongos , Anticorpos Neutralizantes , Anticorpos Antivirais , Linfócitos T CD8-Positivos , Febre Aftosa/imunologia , Febre Aftosa/prevenção & controle , Vírus da Febre Aftosa/fisiologia , Suínos , Vacinação
12.
Mol Pharm ; 21(1): 183-193, 2024 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-38015447

RESUMO

The adjuvant is essential for vaccines because it can enhance or directly induce a strong immune response associated with vaccine antigens. Ginsenoside Rh2 (Rh2) had immunomodulatory effects but was limited by poor solubility and hemolysis. In this study, Rh2 liposomes (Rh2-L) were prepared by ethanol injection methods. The Rh2-L effectively dispersed in a double emulsion adjuvant system to form a Water-in-Oil-in-Water (W/O/W) emulsion and had no hemolysis. The physicochemical properties of the adjuvants were tested, and the immune activity and auxiliary effects indicated by the Foot-and-Mouth disease (FMDV) antigen were evaluated. Compared with the mice vaccinated with the FMD vaccine prepared with the double emulsion adjuvant alone, those with the FMD vaccine prepared with the double emulsion adjuvant containing Rh2-L had significantly higher neutralizing antibody titer and splenocyte proliferation rates and showed higher cellular and humoral immune responses. The results demonstrated that Rh2-L could further enhance the immune effect of the double emulsion adjuvant against Foot-and-Mouth Disease.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Camundongos , Animais , Febre Aftosa/prevenção & controle , Lipossomos , Emulsões , Anticorpos Antivirais , Adjuvantes Imunológicos/farmacologia , Adjuvantes Farmacêuticos , Água
13.
Int J Biol Macromol ; 258(Pt 1): 128837, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38128800

RESUMO

Foot-and-mouth disease virus (FMDV) is a highly contagious pathogen that has caused significant economic losses in the livestock industry. Peptide vaccines engineered with the protective epitopes of FMDV have provided a safer alternative for disease prevention than the traditional inactivated vaccines. However, the immunogenicity of the peptide is usually poor and therefore an adjuvant is required. Here, we showed that recombinant T4 phages displaying the B-cell epitope of the FMDV VP1 protein (VP1130-158), without additional adjuvants, induced similar levels of antigen-specific IgG1 but higher levels of IgG2a compared to the peptide vaccine. Incorporation of a CD4+ T cell epitope, either 3A21-35 of FMDV 3A protein or P2830-844 of tetanus toxoid, further enhanced the immunogenicity of VP1-T4 phage nanoparticles. Interestingly, the extrinsic adjuvant cannot enhance the immunogenicity of the nanoparticles, indicating the intrinsic adjuvant activities of T4 phage. Furthermore, the recombinant T4 phage can be produced on a large scale within a short period of time at a relatively low-cost using Escherichia coli, heralding its potential in the development of a safe and effective FMDV vaccine.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Bacteriófago T4 , Febre Aftosa/prevenção & controle , 60547 , Anticorpos Antivirais , Epitopos de Linfócito B , Adjuvantes Imunológicos , Proteínas do Capsídeo
14.
Virology ; 590: 109950, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38104361

RESUMO

Despite routine vaccination, Israel experiences recurrent outbreaks of foot and mouth disease (FMD). We analyzed VP1 coding sequences of viruses isolated during FMD outbreaks from 2001 to 2011 in Israel and neighboring nations. The Israeli strains were aligned with strains from neighboring countries in corresponding years, implying repeated FMD virus incursions. In 2007 a large FMD epidemic, caused by a serotype O virus, occurred in Israel. Bayesian analysis of whole-genome sequences of viruses isolated during this epidemic revealed predominant transmission among extensively farmed beef-cattle and small ruminants. Small ruminants were key in spreading to beef-cattle, which then transmitted the virus to feedlot-cattle. Wild gazelles had a minor role in transmission. The results may suggest probable transmission of FMD virus from the Palestinian Authority to Israel. Targeting extensive farms via enhanced surveillance and vaccination could improve FMDV control. Given cross-border transmission, a collaborative FMD mitigation strategy across the Middle-East is crucial.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Ovinos , Vírus da Febre Aftosa/genética , Israel/epidemiologia , Teorema de Bayes , Filogenia , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Sorogrupo , Surtos de Doenças/veterinária , Doenças dos Bovinos/epidemiologia , Análise de Sequência , Ruminantes
15.
Virol J ; 20(1): 299, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102688

RESUMO

Foot-and-mouth disease (FMD) is a contagious viral disease that affects the livelihoods and productivity of livestock farmers in endemic regions. It can infect various domestic and wild animals with cloven hooves and is caused by a virus belonging to the genus Aphthovirus and family Picornaviridae, which has seven different serotypes: A, O, C, SAT1, SAT2, SAT3, and Asia-1. This paper aims to provide a comprehensive overview of the molecular epidemiology, economic impact, diagnosis, and control measures of FMD in Ethiopia in comparison with the global situation. The genetic and antigenic diversity of FMD viruses requires a thorough understanding for developing and applying effective control strategies in endemic areas. FMD has direct and indirect economic consequences on animal production. In Ethiopia, FMD outbreaks have led to millions of USD losses due to the restriction or rejection of livestock products in the international market. Therefore, in endemic areas, disease control depends on vaccinations to prevent animals from developing clinical disease. However, in Ethiopia, due to the presence of diverse antigenic serotypes of FMD viruses, regular and extensive molecular investigation of new field isolates is necessary to perform vaccine-matching studies to evaluate the protective potential of the vaccine strain in the country.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Vacinas , Animais , Bovinos , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Etiópia/epidemiologia , Epidemiologia Molecular , Surtos de Doenças , Sorogrupo , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle
16.
Sci Rep ; 13(1): 22583, 2023 12 19.
Artigo em Inglês | MEDLINE | ID: mdl-38114542

RESUMO

Foot-and-mouth disease (FMD) is a severe contagious viral disease of cloven-hoofed animals. In India, a vaccination-based official FMD control programme was started, which got expanded progressively to cover entire country in 2019. The serological tests are used to determine non-structural protein based sero-prevalence rates for properly implementing and assessing the control programme. Since 2008, reporting of the FMD sero-surveillance was limited to the serum sample-based serological test results without going for population-level estimation due to lack of proper statistical methodology. Thus, we present a computational approach for estimating the sero-prevalence rates at the state and national levels. Based on the reported approach, a web-application ( https://nifmd-bbf.icar.gov.in/FMDSeroSurv ) and an R software package ( https://github.com/sam-dfmd/FMDSeroSurv ) have been developed. The presented computational techniques are applied to the FMD sero-surveillance data during 2008-2021 to get the status of virus circulation in India under a strict vaccination policy. Furthermore, through various structural equation models, we attempt to establish a link between India's estimated sero-prevalence rate and field FMD outbreaks. Our results indicate that the current sero-prevalence rates are significantly associated with previous field outbreaks up to 2 years. Besides, we observe downward trends in sero-prevalence and outbreaks over the years, specifically after 2013, which indicate the effectiveness of various measures implemented under the FMD control programme. The findings of the study may help researchers and policymakers to track virus infection and identification of potential disease-free zones through vaccination.


Assuntos
Doenças dos Bovinos , Vírus da Febre Aftosa , Febre Aftosa , Bovinos , Animais , Prevalência , Anticorpos Antivirais , Doenças dos Bovinos/epidemiologia , Doenças dos Bovinos/prevenção & controle , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Surtos de Doenças/veterinária , Índia/epidemiologia
17.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4837-4848, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147985

RESUMO

To further enhance the immune effect of the foot-and-mouth disease (FMD) virus-like particles (VLPs) vaccine, this study prepared FMDV VLPs-zeolitic imidazolate (framework-8, ZIF-8) complexes with different particle sizes. We used a biomimetic mineralization method with Zn2+ and 2-methylimidazole in different concentration ratios to investigate the effect of size on the immunization effect. The results showed that FMDV VLPs-ZIF-8 with three different sizes were successfully prepared, with an approximate size of 70 nm, 100 nm, and 1 000 nm, respectively. Cytotoxicity and animal toxicity tests showed that all three complexes exhibited excellent biological safety. Immunization tests in mice showed that all three complexes enhanced the titers of neutralizing and specific antibodies, and their immune effects improved as the size of the complexes decreased. This study showed that ZIF-8 encapsulation of FMDV VLPs significantly enhanced their immunogenic effect in a size-dependent manner.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas de Partículas Semelhantes a Vírus , Vacinas Virais , Animais , Camundongos , Febre Aftosa/prevenção & controle , Anticorpos Neutralizantes , Imunidade Humoral , Imunização , Anticorpos Antivirais
18.
Sheng Wu Gong Cheng Xue Bao ; 39(12): 4849-4860, 2023 Dec 25.
Artigo em Chinês | MEDLINE | ID: mdl-38147986

RESUMO

Transient expression is the major method to express foot-and-mouth disease virus (FMDV) capsid proteins in mammalian cells. To achieve stable expression of FMDV capsid proteins and efficient assembly of virus like particles (VLPs) in cells, the plasmids of piggyBac (PB) transposon-constitutive expression and PB transposon-tetracycline (Tet) inducible expression vectors were constructed. The function of the plasmids was tested by fluorescent proteins. By adding antibiotics, the constitutive cell pools (C-WT, C-L127P) expressing P12A3C (WT/L127P) genes and the inducible cell pools (I-WT, I-L127P) expressing P12A3C (WT/L127P) genes were generated. The genes of green fluorescent protein, 3C protease and reverse tetracycline transactivator (rtTA) were integrated into chromosome, which was confirmed by fluorescence observation and PCR testing. The cell pool I-L127P has a stronger production capacity of capsid proteins and VLPs, which was confirmed by Western blotting and enzyme linked immunosorbent assay (ELISA), respectively. In conclusion, inducing the chromosomal expression of FMDV capsid proteins was firstly reported, which may facilitate the technical process of mammalian production of FMDV VLPs vaccine and the construction of mammalian inducible expression systems for other proteins.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Vacinas Virais , Animais , Vírus da Febre Aftosa/genética , Proteínas do Capsídeo , Proteínas Virais/metabolismo , Febre Aftosa/prevenção & controle , Tetraciclinas/metabolismo , Anticorpos Antivirais , Mamíferos/metabolismo
19.
BMC Res Notes ; 16(1): 323, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37941022

RESUMO

OBJECTIVE: Determining the serotype of circulating virus strains is important in implementing effective vaccination. In this study, Foot-and-Mouth Disease (FMD) Southern African territory 2 (SAT2) specific primers and TaqMan probe were designed towards rapid SAT2 detection and serotyping. The primers were tested by endpoint reverse transcription (RT) polymerase chain reaction (PCR) and quantitative PCR (RT-qPCR) using the vaccine strain SAT2035. The SAT2 serotype-specific RT-qPCR assay was compared with currently used ELISA and VP1 sequencing using Cohen's kappa statistics. RESULTS: The primers yielded amplicons of band size 190 bp during endpoint RT-PCR. When coupled with the probe, the primers reaction efficiency was determined to be 99% with an r2 value of 0.994. The results show that the SAT2 assay has comparable performance to VP1 sequencing (k = 1) and a moderate degree of agreement with ELISA (k = 0.571). The data shows that the newly designed assay could be considered for serotyping of SAT2 strains. However, for this assay to be complete there is a need to design effective SAT1 and SAT3 primers and probes that can be multiplexed to target other serotypes that co-circulate within relevant FMD endemic pools. For future implementation of the assay there is also a need to increase the number of field samples towards validation of the assay.


Assuntos
Vírus da Febre Aftosa , Febre Aftosa , Animais , Vírus da Febre Aftosa/genética , Sorotipagem/métodos , Febre Aftosa/diagnóstico , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle , Sorogrupo , África Austral
20.
Epidemics ; 45: 100720, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37944405

RESUMO

BACKGROUND: Outbreak response modelling often involves collaboration among academics, and experts from governmental and non-governmental organizations. We conducted a systematic review of modelling studies on human vaccine-preventable disease (VPD) outbreaks to identify patterns in modelling practices between two collaboration types. We complemented this with a mini comparison of foot-and-mouth disease (FMD), a veterinary disease that is controllable by vaccination. METHODS: We searched three databases for modelling studies that assessed the impact of an outbreak response. We extracted data on author affiliation type (academic institution, governmental, and non-governmental organizations), location studied, and whether at least one author was affiliated to the studied location. We also extracted the outcomes and interventions studied, and model characteristics. Included studies were grouped into two collaboration types: purely academic (papers with only academic affiliations), and mixed (all other combinations) to help investigate differences in modelling patterns between collaboration types in the human disease literature and overall differences with FMD collaboration practices. RESULTS: Human VPDs formed 227 of 252 included studies. Purely academic collaborations dominated the human disease studies (56%). Notably, mixed collaborations increased in the last seven years (2013-2019). Most studies had an author affiliated to an institution in the country studied (75.2%) but this was more likely among the mixed collaborations. Contrasted to the human VPDs, mixed collaborations dominated the FMD literature (56%). Furthermore, FMD studies more often had an author with an affiliation to the country studied (92%) and used complex model design, including stochasticity, and model parametrization and validation. CONCLUSION: The increase in mixed collaboration studies over the past seven years could suggest an increase in the uptake of modelling for outbreak response decision-making. We encourage more mixed collaborations between academic and non-academic institutions and the involvement of locally affiliated authors to help ensure that the studies suit local contexts.


Assuntos
COVID-19 , Febre Aftosa , Doenças Preveníveis por Vacina , Animais , Humanos , COVID-19/epidemiologia , Doenças Preveníveis por Vacina/epidemiologia , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Febre Aftosa/epidemiologia , Febre Aftosa/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...